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Abstract. River water temperature modeling is a major task in cli-
mate research. State-of-the-art methods for water temperature modeling
deploy a transductive design, which makes it difficult to generalize to un-
seen water stations during test time. In the present paper, we isolate one
of the common building blocks — a central LSTM, trained for each water
station — and propose an embedding scheme in order to increase both
the prediction accuracy and the amount of shared parameters and thus
the generalization. The proposed embeddings are learned during train-
ing time. In an empirical evaluation we show that our method is able
to reduce the RMSE by about five percentage points compared to the
state-of-the-art reference method while decreasing the tuneable parame-
ters by several orders of magnitude. We also provide a sample analysis of
the embedding space of the catchment area of one specific river. Looking
at the results of this qualitative analysis, we come to the conclusion that
deploying an embedding in water temperature models is not only con-
vincing to decrease the RMSE of water temperature predictions, but also
enables better explainable deep learning models. Moreover, the proposed
embedding technique opens up various unexplored applications in water
temperature research.

Keywords: Water Temperature - Embedding - LSTM - Recurrent Neu-
ral Network

1 Introduction

Rivers and their tributaries can be found everywhere in habitable areas. River
water temperature has a large impact on various biological processes in our
ecosystems [1,2], and thus on flora and fauna, agriculture, or our drinking wa-
ter. Therefore, water temperature in rivers, and in particular its control and
prediction, plays an important role in future climate change.

In general, water temperature is influenced by solar radiation heating the
river bed, atmospheric exchange at the surface, and friction. Other important
factors are snow melt, rain, ground water inflow or waste water inflows of large
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Fig.1: (a) Transductive station-specific LSTMs, where every water station has
its own tuned neural network, which implies that the water station has to be
present during training. (b) Inductive global LSTM where all network weights
are shared and generalization to unseen water stations is possible. (Note that aty
and wt; denote the air and water temperature time series from the k-th water
station and its corresponding weather station, respectively.)

cities. Air temperature and — if available — also discharge are usually used as
exogenous variables to model water temperature [3].

In order to monitor water temperature increase due to climate change, the
Federal Office for the Environment of Switzerland (FOEN) is running a water
temperature monitoring for more than 40 years (with a doubling of the number
of water stations since 2010). The water stations are equipped with a water tem-
perature sensor and they monitor the discharge as well. The Swiss Meteorological
Institute (MeteoSwiss) provides air temperature and other meteorological mea-
surements from weather stations in the vicinity of such water stations. Recently,
the data stemming from both water and weather stations was augmented with
data from a geographic information system (GIS) in order to model the river
segments between such stations as a graph and published under the name Swiss
River Network [4].

For modeling water temperature based on air temperature, various methods
have been proposed in the literature. Physically inspired methods derive models
with few parameters, which are in turn tuned using statistical methods [5]. Other
recent methods are based on deep learning such as, for instance, the long short-
term memory (LSTM). The LSTM is a recurrent neural network (RNN) which
has been successfully applied to many time series problems [6] (including the
task of water temperature modeling [7-9]). More sophisticated neural network
architectures also take into account neighboring water stations [10-12], modeling
the river network as a graph, with nodes representing the water stations and
edges representing the river sections.

The above mentioned deep learning methods perform well and provide ac-
curate predictions of the water temperature for practical purposes®. However,
most of these models are constructed in a way, where water temperature is only
considered at single points in the river. In graph learning terminology, they are
transductive learning methods, where all nodes have to be available at training

3 In practice, an RMSE under one degree Celsius is considered a "good model".
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time, providing no generalization to unseen nodes at test time [13] (see left side of
Fig. 1). This limitation is problematic, as local characteristics of a water station
can indeed be learned, but the model does not necessarily generalize to other
river segments (with different topological or meteorological characteristics).

As a straightforward way to implement a deep learning method in an in-
ductive way, one could apply one single LSTM to all water stations (see right
side of Fig. 1). This method is designed to learn a model which can estimate
the water temperature in the entire Swiss River Network, based on the air tem-
perature in the water station’s vicinity. However, in preliminary experiments we
observe that this global model can not reach the same accuracy as the trans-
ductive methods, which train one station-specific LSTM for every single water
station. In the present work we bridge the performance gap between the trans-
ductive and inductive methods by proposing an embedding based method for
water temperature prediction. For the proposed method, we use a single global
LSTM for the whole Swiss River Network and move the transductive property
into a low dimensional embedding. Due to the small size of the embedding space,
the global network is required to generalize to different river sections.

The remainder of this paper is structured the following way. In Section 2, we
describe the problem of water temperature modeling more formally and describe
the proposed method in detail. In Section 3, we thoroughly assess the proposed
method with an empirical evaluation. As an additional outcome, we discuss the
emerged embedding space as well. Finally, we draw conclusions and propose
future research activities in Section 4.

2 Concatenation Embeddings in an LSTM

2.1 Problem Definition

The problem of water temperature modeling based on air temperature is defined
as follows. For a given time series of an air temperature a,(:), ...,aéT), the task

is to find a model f; which predicts the water temperature Q,(:) at time step ¢
(with 1 <t < T) at the water station k. Formally, we seek a function fj

fe@Vay =g w1 <e<T (1)

which can predict the actual water temperature y,it) of the k-th station at time
t as accurately as possible.

2.2 Concatenation Based LSTM Embedding

The proposed method deploys a station-specific n-dimensional embedding ey €
R™ in an LSTM. The embedding e, € R™ denotes the embedding for the k-th
water station and can be represented as a point in the embedding space R".
The embeddings for each station are learned using a gradient descent technique
during the training phase and represent the only transductive part of our model.
In Fig. 2 the proposed architecture is illustrated.
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Fig.2: The proposed LSTM with concatenation based embeddings. The LSTM
is shared among all water stations but can encode station-specific characteristics
in the embedding ey.

In order to deploy the embedding to an LSTM, we concatenate the embedding

ex to the input a,(f) at any time step t. Formally, the input z® to the LSTM is

defined by
2 = a|lex (2)
where || denotes concatenation.

At first glance, this behavior might appear cumbersome, as ey is the same
static value at any time step. Yet, it turns out that this method allows the em-
bedding to influence each gate of the LSTM. By factoring out the multiplications
with the embedding, this method corresponds to the following LSTM instance:

concat lstm(aé),ek) = LSTM( Hek)5
O = o(Wial” + Vie, + UshY 4 by)
iV = o(W;al" + Viep + U + b))
0¥ = g(W,oal" + Ve +U,h Y +b,)
& = oWoal" + Ve + ULED +b,)
B = F) @ =1 4 (0 g a0
) = o™ @ a(cM)
g = MLP(") (3)

g

Where o(z) denotes the sigmoid activation function and 6(z) the tanh func-
tion. The variables h and ¢ are propagated through time. Bold symbols denote
the learnable network weights. The concatenation embedding introduces four
matrix multiplications with V¢, Vi, V,, V.. All matrices are globally trained
weights and only e depends on the water station k. This static product is then
added to the corresponding gate and can (theoretically) influence each gate in
each hidden dimension.

The last line of Expression 3 is the final step to project the hidden state to a
one dimensional water temperature prediction §(*) at time step t. In our model
we use a multi layer perceptron (MLP) to accomplish this final prediction.
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3 Experimental Evaluation

3.1 Experimental Setup

For our experiment we use the Swiss River Network dataset Gao19 [4]. As there
are fewer weather stations than water stations, we select one water station per
weather station (to mitigate an unfair disadvantage in the global reference sys-
tem, where the same air temperature time series would be mapped to different
water temperatures). In total the resulting dataset consists of 42 water stations
and corresponding weather stations acquired during the years 2010 to 2021. The
temporal resolution are daily averages.

Data from years 2010 to 2018 is used as training set, with a 90/10% validation
split. The validation data is only used for model selection. Data from the two
years 2019 and 2020 is used to define the hold-out test set and we only report
numbers on these two years.

To measure and compare our predictions, we compute the widely used Root
Mean Squared Error (RMSE), and we also report the Mean Average Error
(MAE) and the Nash-Sutcliffe model Efficiency Coefficient (NSE) as defined
in Table 1. While values closer to 0 for the two errors indicate good prediction
quality, values of the NSE closer to 1 indicate a better model.

Table 1: The metrics used for evaluation. y® is the ground truth value and §®)
our prediction.

RMSE MAE NSE

T T T (t) n(t)\2

1 . 1 O] 2@ —9")
) (y® —gn)2 =3 1w =9 1- -

\J T t=1 T t=1 Zthl(y<t) -9)?

3.2 Training and Hyperparameter Tuning

In order to find the best performing embedding, we compute the gradients of the
embedding e; with respect to the training loss and simultaneously adjust the
embedding to the weights of the LSTM during the training phase. We use a grid
search on the hidden dimension of the LSTM, the amount of stacked LSTMs,
the learning rate for the Adam optimizer [14], as well as the amount of an L2
regularization. We then freeze the network parameters and the embedding and
select the model with the lowest validation loss. Note that we fix the dimension
of the embedding space to n = 5 for our evaluations (in Section 3.6 we analyze
the embedding space in more detail).

3.3 Reference Systems

Current state-of-the-art methods build on top of a central LSTM and add neigh-
boring water stations to their model [4,10]. Our goal is to improve this central
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LSTM. Therefore, we compare our novel model against the two following LSTM
based reference methods without the use of neighboring water stations* (outlined
in Fig. 1).

1. Station-Specific LSTMs: The station-specific LSTM reference system de-
ploys a full LSTM, for each available water station k (as introduced in [8]).
We deploy a separate grid search for each trained LSTMy.

2. Global LSTM: The global LSTM reference system is one single LSTM,
as described in Section 2.2 without the introduced embedding. The same
parameters are used and tuned for all available water stations simultaneously
and thus we refer to it as global LSTM.

3.4 Growth of Tuneable Parameters
The global LSTM is a Vanilla LSTM and has
P, =4d(hi + hh + h)

tuneable parameters, where i refers to the input size, d is the number of stacked
LSTMs and h refers to the size of the hidden dimension for the four gates. Using
K station-specific LSTMs leads to

Py = K * 4d(hi + hh + h) (4)

tuneable parameters.

The proposed method introduces additional parameters to the Vanilla LSTM,
and uses tuneable parameters to store the embeddings. Therefore our method
leads to an LSTM with

Pour :4d(hl+hﬂ+hh+h) +K?’L (5)

tuneable parameters.

We analyze the growth of the tuneable parameters by computing the partial
derivative with respect to the variable in question. With respect to the embed-
ding size n, the following increase in tuneable parameters of our model results:

Pour

=4dh + K .
on +

This means that one additional dimension in the embedding space adds an addi-
tional column to the four weight matrices in the LSTM gates (d-times) plus one
tuneable parameter for each of the K water stations. As our embedding space n
is usually small, this growth is almost negligible.

4 In future work, more sophisticated methods can then replace their central LSTM
with our proposed method.
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Table 2: The average metrics reported on the hold-out test set over 42 water
stations.

Method Metric

RMSE MAE NSE

8 Station-Specific LSTMs 0.80 0.62 0.95

g

<

§ Global LSTM 1.54  1.29 0.79

5

C  Global LSTM w. Embedding 0.76 0.59 0.96

The number of water stations K is given by the application and is not subject
to our control. The partial derivatives with respect to K of our method P,,, and
the station-specific reference system P; are

PO'U/T‘ _

5 =" and (6)
Py
3K = 4dh(i+ h+1), respectively. (7)

Hence, we conclude that when the embedding size n is small, our method provides
a parameter growth (Eq. 6) that is orders of magnitude smaller compared to the
station-specific parameter growth (Eq. 7).

3.5 Empirical Results

The test results are obtained after an exhaustive grid search and controlled model
convergence. We report the metrics on the hold-out test set, after the validation
set was used for model selection. Table 2 shows the averages of the reported
metrics (RMSE, MAE, and NSE) measured over all 42 test stations.

We observe that the station-specific LSTMs — as expected and already known
[4, 8] — provide accurate predictions with an RMSE well below 1.0. At the same
time, it is clear that the naive approach of training a global LSTM for all sta-
tions does not work sufficiently well and provides values that cannot be used in
practice. The proposed method not only closes the performance gap between the
station-specific and the global reference systems, but decreases the RMSE even
further. That is, compared to the station-specific reference system our model im-
proves the RMSE by about 5 percentage points (improvements on the previous
state of the art are observed in the other two metrics as well).

Fig. 3 shows the distribution of the RMSEs of all 42 stations stemming from
the hold-out test set as box plots. This illustration shows quite nicely that there
are large differences in the RMSE among the stations (regardless of which model
is used). For example, we observe that in all three systems there are stations that
have an RMSE above 1. However, for the station-specific and our novel model
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Fig.3: RMSE on the test set, illustrated with boxplots of the same 42 water
stations. Some stations are more difficult to model than others.
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Fig.4: Sample result at one specific water station of the Swiss River Network
over a randomly selected test set period of 60 days. The three thin lines of the
plot refer to the predicted water temperatures of the three methods. The thick
black line refers to the ground truth water temperature. The lower graph, with
the same x-axis, shows the air temperature over the same time period.
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Table 3: The number of tuneable parameters of the selected models in the em-
pirical evaluation to serve 42 water stations.

Method Parameters
8 Station-Specific LSTMs 723,394
N
2
;;j Global LSTM 1,513
g
O  Global LSTM w. Embedding 1,307

using an embedding, the RMSE values for the clear majority of stations are below
this 1 degree threshold (while the global LSTM dramatically loses performance
compared to the station-specific methods).

The lack of performance of the global LSTM is also visible in the illustration
of Fig. 4. In this qualitative analysis we randomly select a test period of 60 days
at one specific water station. We choose a station in the flatlands, where the
river already accumulated to a bigger stream, and thus, the water temperature
is less sensitive to small changes in the air temperature. In Fig. 4 it is clearly
visible that the station-specific and embedding based methods can adapt to this
behavior. The global LSTM, on the other hand, tends to exaggerate influences
of air temperature. For example, around days 12, 36, and 52, the global LSTM
exaggerates the effect of a drop in air temperature. Moreover, it is also visible
that the global LSTM is generally further away from the ground truth water
temperature than the other two models.

In Section 3.4, we discuss that our method has a more beneficial parameter
growth in comparison to the station-specific reference system when deploying
it to multiple water stations. In Table 3, we sum up the amount of tuneable
parameters of the best performing models. While station-specific models require
a total of more than 700K parameters to be optimized, we only observe about
1,300 parameters in our novel approach (including the embedding).

3.6 Analysis of the Embedding Space

One follow up question to our method is the size of the embedding space n.
In an additional experiment, we re-run our grid search and evaluate various
embedding sizes (n € {1,2,3,5,10,...,30}). Fig. 5 shows the RMSE on the y-
axis with respect to the embedding size n (on the x-axis). The RMSE plateaus at
an embedding dimension of n = 10, but even a very low dimensional embedding
space with n = 1 or n = 2 is beneficial compared to the station-specific baseline
model.

We also deploy a two dimensional embedding space and train a new model
on all water stations of the Rhine and its tributaries in Switzerland (the Rhine
is selected for this analysis as it has the largest catchment area). This allows us
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Fig.5: RMSE with respect to the embedding size n compared to the station-
specific LSTMs reference system.

to visually analyze spatial properties of all stations in the complete catchment
area in a two-dimensional space (see Fig. 6).

The embedding space is unrestricted and the optimization scheme can place
embeddings arbitrary. However, four natural clusters (A, B, C, and D) are visu-
ally identifiable in the embedding in Fig. 6:

— Cluster A: Stations of this cluster refer to the outflow of the alpine lakes
Walensee (2104), Brienzersee (2457) and Thunersee (2030).

— Cluster B: This cluster contains mostly big rivers in the flatlands, like the
Rhine in Basel (2091), or the Aare in Brugg (2016).

— Cluster C: This cluster is composed of stations near the outflow of the flat-
land lakes Bielersee (2029) or Bodensee (2288).

— Cluster D: This cluster is a collection of various tributaries in hilly, pre-
alpine landscapes relatively far away from each other (like the Giirbe at
Belp (2159), Murg at Wangi (2126), or Linth at Mollis (2372)).

Further away from the origin, we observe various alpine water stations (mainly
leaf nodes), that do not belong to a distinct cluster.

4 Conclusion and Future Work

Many ecosystems depend on the well-being of rivers. Hence, monitoring river
water temperature plays an important role in research of future climate change.
After revisiting state-of-the-art methods for water temperature prediction, we
observe that a vast majority of these methods (e.g. [4,7,8]) have a transductive
design, meaning that all water stations have to be available during training
time. These designs do not share parameters and the method has to learn basic
water temperature characteristics at every station from scratch (leading to large
amounts of tuneable parameters). We propose to address this issue with an
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Fig. 6: Embedding space visualization of the Rhine catchment area. Dotted edges
represent neighboring stations with respect to the water flow [4]. Thus, leaf
nodes denote the first water station after the source of the stream. Blue dots
denote water stations in the flatland while red dots are water stations from alpine
regions. Four clusters (A, B, C, and D) emerge from the data.

embedding scheme. This embedding is designed so that it can be seamlessly
integrated into more sophisticated state-of-the-art methods.

In an empirical evaluation, we demonstrate that our method outperforms
the station-specific LSTMs while using two orders of magnitude less tuneable
parameters. Moreover, by changing the dimensions of the embedding space, our
method allows for flexible tuning between shared parameters and station-specific
characteristics. Further, we show that the method is not sensitive to the size of
the embedding space, and various configurations lead to good results. Last but
not least, we are also able to detect naturally emerging clusters in the embedding
space.

We see several possible future research activities. For instance, we can embed
even more data or enforce constraints in the embedding space. Another idea is to
use embeddings for few shot learning. In this setting, only a few months of water
temperature data needs to be available. This could be particularly interesting as
we cannot wait until we have measured a decade’s worth of water temperatures
before developing new models to account for ongoing climate change.
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