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Abstract. River water temperature modeling – a time series problem
where spatial relations matter – is important to understand our environ-
ment. Currently two research directions are present to tackle this prob-
lem, viz. Recurrent Neural Networks, namely long short-term memory
(LSTM), and Graph-based approaches, which exploit the natural tree
structure of rivers. In the present paper, we extend a state-of-the-art
LSTM method for water temperature modeling with a Graph Convolu-
tional Network and a Graph Isomorphism Network. This novel combina-
tion results in a spatio-temporal neural network which can be applied for
node predictions in any graph having nodes with unique identifiers. In
the present paper, we apply the novel procedure on the Swiss River Net-
work (a data set with decades of measurements of river temperature and
atmospheric variables in Switzerland). In an experimental evaluation we
show that the proposed method is robust in convergence and improves
the state-of-the-art result by several percentage points in terms of Root
Mean Squared Error.

Keywords: River Water Temperature · LSTM · Recurrent Neural Net-
work · GCN · GIN · Graph Neural Network · Spatio Temporal Model

1 Introduction

River water temperature is an important variable in our ecosystem, as a large
number of ecological processes are heavily dependent by it. Mainly higher river
water temperatures are critical as the hydrological ecosystems are sensitive to
raising water temperatures [1]. In the worst case, such a rise results in the ex-
tinction of species as well as the deterioration of water quality [2]. The present
paper researches novel approaches for water temperature modeling.

An accurate and elaborated modeling of the river water temperature has
two benefits. First, with future air temperature projections, one can model river
water temperature more precisely and in turn detect river sections with critical
water temperature more precisely. Second, having more sophisticated models
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allows us to adapt them to more complex problems, such as, for instance, the
investigation of the effects of anthropological buildings on the river infrastruc-
ture [3,4].

River water temperature modeling is an interesting real world application for
machine learning as there are several non linear effects contributing together.
Solar radiation, for instance, is absorbed by the river bed or particles in the
water, which has a major influence on the temperature. The river bed itself
creates friction (which also leads to heat). Snow melt, ground water inflow, city
sewage, or rain water also influence the river water temperature [5].

The Federal Office for the Environment of Switzerland (FOEN) is running a
water temperature monitoring for several decades in many rivers of Switzerland.
Additionally, the Swiss Meteorological Institute (MeteoSwiss) measures air tem-
perature and other atmospheric variables in the vicinity of these water stations.
Recently, data from these water and weather stations in combination with their
connectivity has been published as the Swiss River Network data set [6]. This
data set is unique, yet somehow related to other data sets, e.g. data for rain-fall
run-off models [7], or weather parameter prediction [8].

For modeling the water temperature, the use of the air temperature as well as
the discharge as predictor variables has been proposed. For instance, physically
inspired methods, like Air2Stream [9], show success based on statistical models
using these variables. More recently, the application of long short-term memory
(LSTM) [10,11] has been proposed to further improve the prediction precision.
LSTMs are a special type of Recurrent Neural Network (RNN) and are used
to model time series [12]. Also other deep learning architectures, some taking
the neighboring relation of water stations into account, provide competitive re-
sults [13,14]. In order to model neighboring water stations, the use of graph
structures, where the nodes represent water stations and the edges represent re-
lations between stations based on the river sections, has also been proposed [15].

In the present work, we propose to combine one of the latest RNN methods
for water temperature modeling [16] with Graph Neural Networks (GNNs). The
proposed procedure is particularly designed for node predictions in a node-with-
id network, namely a graph where each node has a unique identifier and is thus
permutation invariant by definition.

The remainder of this paper is structured as follows. In Section 2, we formally
introduce the problem of temperature modeling. Additionally, we briefly review
the latest RNN methods for water temperature modeling and the GNNs actually
used in our procedure. In Section 3, we introduce the proposed spatio-temporal
neural network suited for a node-with-id network like the Swiss River Network.
Section 4 contains a thorough evaluation of the proposed method. Finally, we
draw conclusions and propose future research directions in Section 5.

2 Related Work

In this work we focus on water temperature modeling based on air temperature.
Formally, for a given time series of T air temperatures at(1)k , ..., at

(T )
k at a specific
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water station indexed k, the goal is to model fk with

fk(at
(1)
k , ..., at

(t)
k ) = ŵt

(t)

k , ∀t ∈ {1, . . . , T}

so that ŵt
(t)

k is the predicted water temperature at time step t (with 1 ≤ t ≤ T )
at water station k.

The method proposed in this paper combines two state-of-the-art directions
in water temperature modeling, namely RNNs and GNNs which are reviewed in
the next two subsections.

2.1 LSTM Based Water Temperature Modeling

LSTM (a special type of an RNN) has been deployed to many time series prob-
lems [12]. The Station-Specific LSTM [6,10] for water temperature modeling,
for instance, uses one vanilla LSTM for each available water station in order to
model fk. The drawback of this approach is that it results in many models to
converge and maintain.

Water temperature modeling LSTMs have recently been extended with an
embedding per water station [16], termed LSTM-E. Formally, the LSTM-E
method uses the following algorithm:

LSTM-E(at(t)k , ek) := LSTM(at
(t)
k ||ek) :

f (t) = σ(Wfa
(t)
k + Vfek +Ufh

(t−1) + bf )

i(t) = σ(Wia
(t)
k + Viek +Uih

(t−1) + bi)

o(t) = σ(Woa
(t)
k + Voek +Uoh

(t−1) + bo)

c̃(t) = θ(Wca
(t)
k + Vcek +Uch

(t−1) + bc)

c(t) = f (t) ⊙ c(t−1) + i(t) ⊙ c̃(t)

h(t) = o(t) ⊙ θ(c(t))

ŵt
(t)

= MLP (h(t))

As in the vanilla LSTM, σ(z) denotes the sigmoid activation function and
θ(z) is the tanh function. The two variables h and c are the hidden state and
propagated through time. The bold symbols are the learnable network weights,
which are shared among all water stations.

Roughly speaking, the LSTM-E corresponds to one single global LSTM where
every water station k has an assigned embedding ek which is in turn learned
during training time. It has been shown that this method not only improves
the predictive performance but also lowers the trainable parameters by several
orders of magnitude compared to station-specific LSTMs [16].
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2.2 Graph Neural Networks (GNNs)

In several contributions, it has been shown that combining information of neigh-
boring water stations is beneficial to hydrological models [13,15,17]. In order to
make use of the spatial connectivity between water stations, we use the graph
introduced in the Swiss River Network [6] which actually corresponds to a node-
with-id network.

Formally, a node-with-id network is a graph G = (V,E) where V are the
nodes and E the edges. Additionally, there is an identifier function id : V → N,
which assigns a unique and ordinal identifier to each node on the network. This
introduces a deterministic ordering of nodes in the graph. Note, however, that
the graph still has an irregular structure, as the degree of each node can vary.
Thus, GNNs with message passing mechanisms are suited to this data structure.

The generalized message passing algorithm expects a feature vector xi at each
node vi ∈ V . In a first step, this feature vector is transformed by a function g(xi)
and then transmitted along the edges of node vi. In a second step, each node
vi receives |N (vi)| incoming messages and aggregates them to zi (where N (vi)
refers to the set of neighboring nodes of vi). In a third step, each node updates
its own feature vector using a function h(xi, zi), resulting in a new state at each
node. The complete message passing process can be applied M -times (increasing
the receptive field of each node). By adding an activation function in between
executions of message passing we finally obtain a GNN [18].

More formally, Eq. 1 shows the generalized message passing framework for
the update step of node vi with its neighbor nodes vj ∈ N (vi). The aggregation
function aggr is usually implemented as mean or sum (yet, other methods are
available).

x
(m)
i = h(x

(m−1)
i , aggrvj∈N (vi)(g(x

(m−1)
j ,x

(m−1)
i ))) (1)

In Eq. 1 we use index m to indicate the m-th execution of message passing.
In the present work, we use two state-of-the-art implementations of the message
passing framework, viz. Graph Convolutional Networks (GCN) [18] and Graph
Isomorphic Networks (GIN) [19].

– The GCN [18] uses the following implementation of the message passing
algorithm (with an edge weight of 1):

x
(m)
i = ΘT︸︷︷︸

h

∑
vj∈N (vi)∪{vi}︸ ︷︷ ︸

aggr

1√
d̂j d̂i

x
(m−1)
j

︸ ︷︷ ︸
g

d̂i = 1 + deg(vi)

where Θ are the learnable filter weights and the aggregation corresponds to
the adjacency matrix with inserted self loops (deg(vi) refers to the degree of
node vi).
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– The GIN [19] improves the expressiveness of GCN by approximating an
injective multi set aggregation function using MLPs. In its reduced form it
uses the following implementations of the message passing algorithm:

x
(m)
i = MLP︸ ︷︷ ︸

h

(1 + ϵ)x
(m−1)
i +

∑
vj∈N (vi)︸ ︷︷ ︸

aggr

x
(m−1)
j︸ ︷︷ ︸
g


As in the literature proposed we use an MLP during the node update step
and ϵ is a free parameter.

3 Spatio-Temporal Nodes-with-Id Network

Major contribution of this paper is that we combine the RNN model LSTM-E
(detailed in Section 2.1) and both GNN architectures GCN and GIN (detailed
in Section 2.2) for water temperature modeling. In particular, we propose the
following architecture that describes the method at water station k at time
step t in the time series for m ∈ {1, . . . ,M} message passing steps. (See also
Fig. 1 which illustrates the general architecture of the proposed spatio-temporal
network).

x
(t,0)
k = LSTM-E(at(t)k , ek) , stacked D-times (2)

x
(t,m)
k = GNN(X(t,m−1), E) , repeated M -times (3)

ŵt
(t)

k = MLP(x(t,M)
k ) (4)

First (in Eq. 2), we apply the LSTM-E Method at each node of the network
in order to transform the air temperature into a hidden state which has high
predictive power. In Eq. 2 atk is the air temperature at water station k and ek
refers to the station specific embedding. In a second step (in Eq. 3), we apply
the message passing algorithm, so that the network can take information of its
surrounding nodes into account and further refine the hidden state. This message
passing step takes as input all the hidden states xi ∈ X of all water stations and
edges E of the Swiss River Network graph. In a last step (in Eq. 4), the hidden
state is projected to a water temperature using linear transformations.

Note that the LSTM-E, GNN, MLP are all global models with shared pa-
rameters among all water stations, and only the embedding ek is station-specific.

4 Experimental Evaluation

4.1 Experimental Setup

For our evaluation, we use the catchment area of the river Rhine of the Swiss
River Network dataset G2010 [6]. This results in one connected component with
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Fig. 1: The proposed method at water station k within a node-with-id network.
The air temperature atk is transformed using the LSTM-E Method [16], an em-
bedding based LSTM. The hidden state is then collected in the graph structure
of the Swiss River Network [6]. The GNN refines the hidden state using message
passing among neighboring nodes. At the latest stage, an MLP predicts the final
water temperature ŵt

(t)

k at time step t.

50 water stations and corresponding air temperature from the years 2010 to the
end of 2020. We use daily averaged temperatures.3

Data from the years 2010 to 2018 are used as training set. From these years
we use a 90/10% training / validation split. The validation set is used for model
selection only, as we run an exhaustive grid search over the hyperparameters.
Data from the two years 2019 and 2020 are used as test set and are not considered
during training time. In this work we only report metrics obtained on the test
set.

We compare the proposed method to two state-of-the-art systems, viz. the
station-specific LSTM [10] and the embedding based LSTM [16].

– The Station-Specific LSTM uses one vanilla LSTM for each water station [10].
Each station-specific LSTM is trained in isolation and a grid search is run
to find the best performing hyperparameters for each water station [6].

– The Embedding LSTM corresponds to the state-of-the-art RNN LSTM-E
and does not use neighboring information, yet learned embeddings per sta-
tion [16].

To compare and asses the predictive performance, we report the widely used
Root Mean Squared Error (RMSE), the Mean Average Error (MAE) and the

3 Code and data is made available under https://swiss-river-network.github.io .

https://swiss-river-network.github.io
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Nash-Sutcliffe model Efficiency Coefficient (NSE) as defined in Table 1. For
both RMSE and MAE, values closer to 0 and for the NSE values closer to 1
indicate better model performance.

Table 1: The three metrics used for evaluation of the methods (wt(t) is the ground
truth value for the water temperature and ŵt

(t)
refers to our prediction).

RMSE MAE NSE√√√√ 1

T

T∑
t=1

(wt(t) − ŵt
(t)

)2
1

T

T∑
t=1

|wt(t) − ŵt
(t)| 1−

∑T
t=1(wt(t) − ŵt

(t)
)2∑T

t=1(wt(t) − w̄t)2

4.2 Training and Hyperparameter Tuning

As proposed in the LSTM-E method [16], we optimize the embeddings ek during
training time. We use a grid search on the learning rate, the embedding dimen-
sion, the amount of stacked LSTMs D, the amount of message passing steps M ,
the width of the hidden space used in the LSTM as well the GNN. Table 2 shows
the search space of the grid search for all five parameters. As gradient descent
based optimizer we use the Adam optimizer [20] and model selection is based on
the lowest RMSE on the validation set.

4.3 Empirical Results

We report the metrics (RMSE, MAE, and NSE) on the hold-out test set in
Table 3. The test set contains 50 water stations and we report the average values
of each metric over all 50 stations. To encounter random artifacts, we rerun the
grid search several times and report the standard deviation in brackets.

The proposed method that combines the LSTM-E with GNNs shows an im-
provement in all metrics for both instances of the GNN. If we compare our ap-
proach with the station-specific LSTM, we observe an improvement in the RMSE
and MAE of around 10 percent (while the NSE is only slightly improved). When
comparing with the Embedding LSTM, we observe only slight improvements
(for the RMSE we see an absolute improvement of 0.01 and 0.02 for GCN and
GIN, respectively) and for the MAE an absolute improvement of 0.01 is observed
for both models). What is noticeable, however, is the significant decrease in the
standard deviation for the GIN model. Compared to the Embedding LSTM,
these deviations are approximately seven times, five times and 20 times smaller
than for the Embedding LSTM (according to RMSE, MAE and NSE), which
corresponds to a massive improvement in the robustness of the model.
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Table 2: Space of the grid search among all embedding and graph based methods.
Hyperparameter Values

Min Max

Learning rate 0.005 0.01

Embedding dimensions 5 10

Stacked LSTMs D 1 2

Message passing steps M 1 2

Hidden space width 8 16

Table 3: The average metrics reported on the hold-out test set over 50 water
stations. Brackets indicate the standard deviation after multiple runs of the grid
search. For each metric the best result is marked in bold.

Method Metric

RMSE MAE NSE

R
ef

er
en

ce Station-Specific LSTMs [10] 0.80 0.62 0.95

Embedding LSTM [16] 0.74 (± 0.007) 0.57 (± 0.005) 0.96 (± 0.002)

O
ur

s

Spatio Temporal (GCN) 0.73 (± 0.012) 0.56 (± 0.009) 0.97 (± 0.001)

Spatio Temporal (GIN) 0.72 (± 0.001) 0.56 (± 0.001) 0.97 (± 0.00001)

5 Conclusion

Water temperature of rivers plays an important role in future climate change
and thus quite an effort is made in monitoring and prediction. However, further
research is needed due to two reasons. First, to improve the predictive perfor-
mance of the current models, and second to flexibly adapt the models to future
tasks. In the present paper, we propose to use a state-of-the-art RNN in wa-
ter temperature modeling and extend it with a graph based network using the
message passing mechanism. This leads to a spatio-temporal neural network.

In an empirical evaluation we demonstrate that the use of the spatial infor-
mation improves the modeling performance in three different metrics, setting a
new state-of-the-art baseline in water temperature modeling. We also observe a
beneficial improvement in robustness of model convergence.

Major goal of this paper is to improve the accuracy of water temperature
modeling. Yet, working with graphs enables more flexible approaches than col-
lecting data for a decade until an isolated LSTM converges. Moreover, graph
modeling opens a variety of other research directions. The proposed framework
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might be suited, for instance, to model dynamic changes on the underlying river
network (for example, if a new water station is built or a short-term measure-
ment is made). Some parts of Switzerland do have more water stations, this
means we can also nest finer resolutions into the current graph, or explore the
relation between neighboring stations in more detail. Last but not least, the pro-
posed method makes use of a node-with-id network, and thus it easily generalizes
to other real world applications like transportation, computer, or social media
networks.
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